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Abstract 

The theory of X-ray diffraction by ideal crystals under 
the conditions when the incident and diffracted beams 
are directed at small angles to the entrance surface of a 
crystal has been developed. Besides the diffracted wave 
propagating inside the crystal (i.e. Laue-case diffrac- 
tion) there are two specular reflected waves arising 
from incident and diffracted waves respectively. Such a 
diffraction scheme has been recently put into practice 
[Marra, Eisenberger & Cho (1979). J. Appl. Phys. 50, 
6927-6933]. It is found that at small glancing angles of 
incidence there exist directions in which the intensity of 
the reflected diffracted wave is close to the incident 
wave intensity, while both the specular reflected wave 
and diffracted wave intensities are close to zero. The 
analytical expressions are obtained for the diffraction 
curve shape. It is shown that for diffraction curve 
measurements high collimation through the glancing 
angle of incidence of X-rays on the crystal, q~, is 
sufficient. There is no need to provide collimation 
through parameter a denoting deviation from exact 
Bragg conditions. Owing to the rigid relation between 
a, q~ and the angle of emergence of the reflected dif- 
fracted wave from the entrance surface of the crystal, ~ ' ,  

~2 ~ (~ + ¢~t2, 

when measuring the intensity of the reflected diffracted 
wave as a function of O, the intensity is obtained as a 
function of a. Measurement of ~ '  with the accuracy of 
about 30" corresponds to accuracy through a of about 
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0.1". These facts sufficiently simplify the performance 
of experiment and open wide prospects for studies of 
crystal structure of thin subsurface layers with unique 
accuracy. 

1. Introduction 

The use of extremely asymmetric X-ray diffraction 
techniques requires the account of the specular reflec- 
tion phenomenon. This problem has been studied in 
detail for both Bragg-case (Farwig & Schfirmann, 
1967; Kishino, 1971; Rustichelli, 1975) and Laue-case 
diffraction (Farwig & Sch/irmann, 1967; Kishino, 
Noda & Kohra, 1972; Bedynska, 1973, 1974; H~irtwig, 
1976, 1977). In the Laue case the specular reflection 
effect would essentially increase the intensity of 
anomalously transmitted waves in the T beam. In the 
Bragg case a decrease in penetration depth due to 
specular reflection leads to an appreciable increase in 
the integral reflection coefficient with the position and 
shape of the Bragg peak being essentially changed. 
Consideration of the specular reflection phenomenon 
does not appear to be restricted only to asymmetric 
diffraction schemes. 

A new diffraction scheme has been recently 
described (Marra, Eisenberger & Cho, 1979). In this 
scheme, the incident-beam glancing angle was chosen 
in such a way as to allow the Laue-case diffraction 
condition to be realized. On the other hand, both the 
incident and diffracted beams made small angles with 
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the crystal surface (see Fig. 1). Not only the incident 
but also the diffracted beams were reflected from the 
crystal. The angular dependence of the reflected 
diffracted beam contains valuable information on the 
crystal structure of the thin subsurface layers. 

The present paper deals with the detailed analysis of 
diffraction scattering in such geometry for perfect 
crystals. 

2. General considerations 

We suppose the plane monochromatic wave of 
amplitude E 0 and wave vector x o to be incident on the 
crystal surface at a small glancing angle ~. Keeping 
small, one can choose the direction of incidence to 
provide strong diffraction scattering in a crystal from 
planes perpendicular to the surface of the crystal (see 
Fig. 1). At the same time, the diffracted wave angle 
with the entrance surface ~ '  is also small. As a result, 
owing to the specular reflection, both the incident and 
diffracted waves are reflected from the crystal. The 
amplitudes of these waves are denoted by E s and E s, 
respectively. As mentioned above, the X-ray wave field 
should consist of three waves at the entrance surface of 
a crystal: 

E(r) = exp(ix0r ) + E s exp(ixSr) + E~ exp(ixS r), (1) 

where x0 s and x s are the wave vectors of the incident 
and diffracted waves respectively, being specular 
reflected. 

Assuming ~2 <~ 1, we have 

= = - ( X o ) ~  X o  z Xo  ~ s 

(X~)z = - X o  q~'. (2) 

The angles ~ and ~ '  are connected by the equation 

(~2= (~t2 -k- ~ (3) 

where ~ is a parameter denoting the deviation from 
exact Bragg conditions: 

(X 0 + Kh) 2 -  X0 2 
ct - (4) 

xg 
Here K h is the reciprocal-lattice vector. 

t ' ~  knDh ~ 

° ~DIFFRACTING 
PLAN~S 

Fig. 1. The scheme of diffraction scattering of X-rays under 
specular reflection conditions. 

Inside the crystal, the field consists of incident and 
diffracted waves: 

D ( r ) =  D0 exp(ik0r) + Dhexp(ikhr). (5) 

In the general case, the complex wave vector k 0 differs 
from the vacuum wave vector x 0 by a small value at 
normal n to the crystal surface: 

k 0 = x 0 + nx 06. (6) 

k h differs from k 0 by the reciprocal-lattice vector Kh: 

k h = k 0 + K k. 

The value ~ and the relationships between the ampli- 
tudes D O and D h are determined from the fundamental 
equations of the dynamic theory [for instance, see 
Pinsker (1978)], which can be written in a more 
convenient form as follows: 

X2oz- k~z 
D O = -XoDo -- xkDh xg 

( x g z -  kgz + a) Dh= - Z h D ° -  ~'°Dh" 

For the sake of simplicity, these scalar equations are 
written for a-polarized waves, i.e. for waves with the 
induction vectors perpendicular to the scattering plane 
formed by x o and x s. In (7), Z0, 2'h, 2'~ are the Fourier 
coefficients of electric susceptibility, the parameter a is 
defined from (4). The condition of consistency of set (7) 
gives the secular equation for determination of 6: 

w(w-~)-xhx~=o, (8) 
where 

(.X~z- k~z + Zo) =_ c~2 + 2 ( ~ -  Zo. (9) 
W = - -  X 2 

Further, it is convenient to determine, from secular 
equation (8), not the 6 value, as is usually the case, but 
the value u defined as follows: 

koz = UXo. (10) 

As a result we have 

u(j) = +(~2 + w,~ + Zo)1/2 
(11) 

w (i) = a/2 + (a2/4 + Zh Z~) I/2, 

where i = 1, 2 and j = 1, 2, 3, 4. In the case of a thick 
crystal it is reasonable to consider only the waves with 
the in-depth-decreasing amplitudes. So we are in- 
terested in roots u ~j) with 

Im u ~JI > 0. (12) 

To determine the Eo s and E s amplitudes, one has to 
use not only the wave-field-continuity conditions 

E o + Eo s = D~o 1) + D(o 2) 
(13) 

E s = D~" + D~ z, 
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but also the continuity conditions of the amplitude 
derivatives which are equivalent to the conditions of 
continuity of tangential components of the magnetic 
field vector: 

O(Eo _ E s) = U(1)D(o 1) +//(2) D(o 2) 
(14) 

--O'  E~ = u (') D~ l) + u (2) D~ 2). 

The amplitudes D(o i) and D~ i) are connected by dynamic 
equations (7). 

From (7), (13), (14), it is easy to obtain 

El, = --2 (~Xh(U (2) - -  U (I)) 

x [w(2)(u (" + O)(u (2) + 0 9  

- -  W(1)(U (I) + I~) ' )(U (2) + 0 ) ]  -1  E 0. (15) 

Finally, for the intensity of a diffracted wave 
specular reflected from the entrance surface of a crystal 
we obtain 

es = (iESl2/iEol2) × 0 ' / 0  

= 4 OO'  I xh I 2 I //(2) __ //(1) I 2 

X I W(2)(U (I) + O)(U (2) + O') 

- -  W(I)( / / (2)  + O ) ( U  (1) "1- 0')1 -2 (16) 

Equations (16) and (11) provide the complete 
solution of the problem of finding the reflection 
coefficient of an appropriate wave. 

3. The analysis of  a diffraction pattern 

The reflection coefficient p s  of the diffracted wave from 
the entrance surface of a crystal has an appreciable 
value only when the glancing angle • ~ • 0 , • 0 = 
(IXot) u2 and parameter a ~ Izhl. Obviously, owing to 
small • the depth of X-ray penetration into a crystal 
should be small; therefore the curve P~(a) provides 
information on the crystal structure of relatively thin 
subsurface layers. 

Let us begin the analysis with the case when I~1 >> 
Izhl, i.e. far from exact Bragg conditions. In this case 
for roots u (~,2) one has approximately 

u(" = (02 + Z0) v2 

u(2) = (0 '2  + Zo) m. 
(17) 

Taking into account (17), the following equation for 
reflection coefficient P~ is obtained: 

p s =  
41Zh 12 • 

( ( ~  -t- (~ ' )2  1(0 2 + XO)I/2 + 0 1 2  

it,, 

1(O '2 + Xo) 1/2 + ~il 2" (18) 

From (18) and (3) it appears that with the deviation 
from the exact Bragg condition the reflected diffracted 
wave intensity sharply decreases. It can be easily seen 

that (18) is valid only when either • or O' are much 
greater than 00. For exact Bragg condition a = 0 and 
therefore 0 ' =  (it), then 

P~(c~ = O) = I 0 [ ( 0  2 + Zo + Zh) 1/2 -- ( °2 + Xo -- X~) 1/2] 

x [ (0  2 + Xo + Zh) 1/2 + O] -1 

X [ (0I  )2 "+- ,~0 - -  Xh) 1/2 "4- (J~)]-I [ 2. (19) 

The corresponding curve PhS(O) is shown in Fig. 2. The 
calculations are made for the 220 reflection of Cu K a  
radiation from a germanium crystal, with allowance for 
absorption in the crystal. 

It should be noted that the intensity of the reflected 
diffracted wave reaches a value close to unity for the 
angle • = (Ix0 - zhl) 1/2. If we neglect the imaginary 
parts of coefficients Z0 and Zh, the following expression 
is obtained from (19) at the glancing angle of incidence 
• = ( I Z o  - -  zhl)X/2: 

P (a = 0 )  = . ( 2 0 )  

Xo + Xh 

Since for the 220 reflection Zh slightly differs from :g0, 
for p s  one obtains a value close to unity. At the same 
time the intensity of the specular reflected wave is 
small. Neglecting the absorption of X-rays in the 
crystal, one has (see formulae 13, 14): 

P ° s = l x ° - - Z h  I Z 0 + x h  " (21) 

Thus, a rather interesting physical phenomenon takes 
place, that is a strong suppression of specular reflected 
wave intensity. In the case far from the exact Bragg 
condition the specular reflected wave intensity is close 
to unity for the same glancing angle of incidence • = 
(IX0 - Xhl) v2. 

0.5 

/ 
0 8 16 24 32 ~ = ¢~' (min) 

Fig. 2. The intensity of a specular reflected diffracted wave from 
the entrance surface of a Ge crystal (Cu Kct radiation, 220 
reflection) as a function of q~ = ~' for exact Bragg condition, 
a = 0. 1, 2, 3 indicate the following values of q~: (1) ¢~ = (IZ0 + 
Zhl) 1/2, (2) ~ = (IZol)1/2 = ¢~0; (3) • = (Iz0- Zhl) 1/2. 
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Rather strong intensity of reflected diffracted wave is 
retained in the wide angular range (IX0 - 1'hi )~/~ _< q~ < 
(IX0 + X~I) 1/2. The value ps  sharply decreases outside 
this angular region. 

In all diffraction experiments the dependence of the 
diffracted wave intensity on the parameter ct is required 
to determine crystal structure parameters and 
coefficients of susceptibility (X0,X~,). As in usual cases of 
normal incidence, in the given case the diffraction 
scattering disappears with the deviation from the exact 
Bragg condition by about some tens of seconds of arc. 
Usually, high collimation of the incident beam, provid- 
ing small values of the parameter a, is required for 
diffraction studies in crystals. 

In the considered scheme, besides the above col- 
limation rather narrow beams are indispensable in the 
vertical plane to ensure small glancing angles of 
incidence. Here the requirements for collimation are not 
so rigid and are of the order of several minutes of arc. 
However, ensuring a twice collimated beam through et 
and q~ is a complicated technical problem. From this 
fact it might seem that the theoretical analysis carried 
out in the present paper has a purely academic 
character and that the realization of such experiments 
can be expected only in the future. However, there is no 
need to provide horizontal collimation through a owing 
to the connection between a and q~' (see formula 3). In 
fact, when measuring the intensity of the reflected 
diffracted wave as a function of q~' (which varies at 
distances of about the total external reflection angle, i.e. 
some minutes of arc) one actually measures the 
intensity as a function of a. Typical curves of p s  as a 

function of q~' (and consequently of a) are shown in 
Fig. 3. The segments in Fig. 3 present the variations of 
ct in seconds of arc corresponding to variations of O' in 
the band of 4'. For example, the variation of q~' in the 
band 8-12 '  corresponds to variation of ct by about 
1.4". 

In the angular range of incidence (Ig0 - Zhl) 1/2 < C19 
< (Ix0 + Zhl) 1/2, a strong intensity of the reflected 
diffracted wave is observed, with distinct peculiarities at 
the values of q~' corresponding to the exact Bragg 
condition ~t = 0. For instance, the curve 3, corre- 
sponding to the glancing angle of incidence • = (IX0- 
Xhl) 1/2 has a narrow maximum near ~t = 0, and with the 
deviation from ~t = 0 by fractions of a second the 
intensity ps  sharply decreases. However, even these 
distinct peculiarities can be, in principle, measured 
experimentally. 

As follows from (3), the variation of angle q~' by the 
value A q~' corresponds to the variation of a by the 
value 

A~t = 2 q~' A q~'. (22) 

As shown in a paper (Kov'ev & Matveev, 1981) on 
studies of total external reflection, it is rather easy to 
carry out measurements of • and q~' with the accuracy 
of about some tens of seconds of arc. Taking into 
account the fact that q~' itself is of the order of 10 -3 
rain it can be easily seen from (22) that here appears an 
opportunity to carry out precision measurements of 
diffraction curves through 0t with an accuracy exceed- 
ing 0.01".  It is this fact that opens up wide prospects 
for experimental application of the considered 
technique. 

ps 
A c t =  1 - 4 "  

Act = 3 I' Act = 5" 

0"5 

- -  ) ) | 

0 8 ~6 2'4 ;2 4'0 . '  Cm~n) 

Fig. 3. The intensity of a specular reflected diffracted wave from 
the entrance surface of a Ge crystal (Cu Kct radiation, 220 
reflection) as a function of q0' (and consequently of ct) for the 
following values of glancing angle of incidence qb: (1) qb = (IX0 + 
X h l ) l / 2 . ~  (2) q~ = q~0; (3) q~ = (Ill0 - • h [ )  1/2. The segments present 
the variation of ct by the value Act in s of arc corresponding to the 
variation of q~' in the band of 4'. The variation of qJ' in bands 
8-12;  20-24; 36-40 '  is equivalent to Act of about 1.4; 3; 5" 
respectively (see formula 22). 
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